1. 主要学术论文(一作或通讯): [1] Kaifeng Peng, Weiguo Jiang, Peng Hou, et al. (2024). Detailed wetland-type classification using Landsat-8 time-series images: a pixel- and object-based algorithm with knowledge (POK), GIScience & Remote Sensing, 61:1, 2293525. (SCI二区,IF=6.7) [2] Kaifeng Peng, Weiguo Jiang, Xuejun Wang, et al. (2023). Evaluation of future wetland changes under optimal scenarios and land degradation neutrality analysis in the Guangdong-Hong Kong-Macao Greater Bay Area. Science of the Total Environment, 879(March), 163111. (SCI一区,IF=9.8) [3] Kaifeng Peng, Weiguo Jiang, Peng Hou, et al.(2023). Continental-scale wetland mapping: a novel algorithm for detailed-type wetland classification based on time series Sentinel-1 /2 images. Ecological Indicators.148, 110113. (SCI二区,IF=6.9) [4] Kaifeng Peng, Weiguo Jiang, Ziyan Ling Z, et al. (2021). Evaluating the potential impacts of land use changes on ecosystem service value under multiple scenarios in support of SDG reporting: A case study of the Wuhan urban agglomeration. Journal of Cleaner Production, 307: 127321. (SCI一区,IF=11.1,ESI高被引) [5] Kaifeng Peng, Weiguo Jiang, Yue Deng, et al. (2020). Simulating wetland changes under different scenarios based on integrating the random forest and CLUE-S models: A case study of Wuhan Urban Agglomeration. Ecological Indicators, 117: 106671. (SCI二区,IF=6.9) [6] 彭凯锋, 蒋卫国, 侯鹏, 凌子燕, 牛振国, 毛德华, 黄卓. 结合多源专题数据和目视解译的大区域密集湿地样本数据生产. 遥感学报, 2024, 28(2): 334-345.(EI,中文核心) [7] 彭凯锋, 蒋卫国, 侯鹏, 等. 三江源国家公园植被时空变化及其影响因子[J]. 生态学杂志, 2020, 39(10): 3388-3396. (中文核心) [8] 彭凯锋, 蒋卫国, 邓越. 武汉城市圈湿地受损程度识别及驱动因素分析[J]. 自然资源学报, 2019, 34(8): 1694-1707. (CSSCI,中文核心) [9] Kaifeng Peng, Weiguo Jiang, Yue Deng. Simulating urban land use changes by incorporating logistic regression and CLUE-S model: a case study of Wuhan city. 2021 28th International Conference on Geoinformatics, pp. 1-5.(EI,会议论文) 2. 合作发表学术论文: [1] Zhuo Li, Weiguo Jiang, Kaifeng Peng, et al. (2024). Comparative analysis of land use change prediction models for land and fine wetland types: Taking the wetland cities Changshu and Haikou as examples. Landscape and Urban Planning, 243, 104975. (SCI一区,IF=9.7) [2] Ze Zhang, Weiguo Jiang, Kaifeng Peng, et al. (2023) Assessment of the impact of wetland changes on carbon storage in coastal urban agglomerations from 1990 to 2035 in support of SDG15.1. Science of the Total Environment, 877, 162824. (SCI一区,IF=9.8) [3] Zhuo Li, Weiguo Jiang, Peng Hou, Kaifeng Peng, et al. (2023). Changes in the ecosystem service importance of the seven major river basins in China during the implementation of the Millennium development goals (2000–2015) and sustainable development goals (2015–2020). Journal of Cleaner Production, 443, 139787. (SCI一区,IF=11.1) [4] Xiaoya Wang, Weiguo Jiang, Kaifeng Peng, et al. (2022) A framework for fine classification of urban wetlands based on random forest and knowledge rules: taking the wetland cities of Haikou and Yinchuan as examples, GIScience & Remote Sensing, 59:1, 2144-2163. (SCI二区,IF=6.7) [5] Geng Zhipeng, Weiguo Jiang, Kaifeng Peng, et al. (2023) Wetland Mapping and Landscape Analysis for Supporting International Wetland Cities: Case Studies in Nanchang City and Wuhan City. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 8858-8870. (SCI二区,IF=5.5) [6] 邓雅文, 蒋卫国, 王晓雅, 彭凯锋. 基于随机森林算法和知识规则的国际湿地城市精细湿地分类——以常德市为例[J]. 遥感学报, 2023, 27(06): 1426-1440. (EI,中文核心) [7] 陈妍, 侯鹏, 王媛, 彭凯锋, 等.生态保护地协同管控成效评估[J]. 自然资源学报, 2020, 35(04): 779-787. (CSSCI,中文核心) |